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Scientific Progress



Abstract





Due to their practical import, flow control problems have attracted increasing attention.  This research specifically considers flow 
separation control, which can provide greater maneuverability and performance for the controlled system as well as reduced 
vibration.  In particular, it considers control of flow separation over a NACA-0025 airfoil using microjet actuators and develops 
Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC), a novel approach to Nonlinear Model Predictive Control 
that applies the Minimal Resource Allocation Network algorithm for nonlinear system identification and the Sampling Based 
Model Predictive Optimization (SBMPO) algorithm to achieve effective nonlinear control. Through pressure data and flow 
characterization from wind tunnel experiments, effective and robust separation control is demonstrated and it is seen that the 
method’s computational efficiency is sufficient for successful real time implementation.  Furthermore, this research shows that 
SBMPC is guaranteed to find the global minimum subject to the sampling if the prediction horizon is sufficiently long.  On 
problems of increasingly complexity it is demonstrated to avoid the local minima to which gradient-based methods tend to 
converge and is also shown to be effective with a multi-input, multi-output, time-varying power system combustion control 
problem.
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Statement of the Problem Studied





The closed loop control of flow separation in changing environments presents a significant challenge due to unknown, nonlinear 
system dynamics, and changing flow conditions. Currently available methods have produced good results for static flow 
conditions, but they require excessive tuning and therefore are not robust to changes such as angle of attack or Reynolds 
Number variation. This research investigates a new approach to flow control based on adaptive, neural network modeling and 
graph search optimization.  The approach is called Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC) and 
is illustrated in Fig. 1.  It is developed to enable adaptive nonlinear control of systems that can converge to near global minimum 
and enables enforcement of constraints on both the system inputs and outputs.  The research considers control of flow 
separation over a NACA-0025 airfoil using microjet actuators and pressure transducers as illustrated in Fig. 2.  It is also sought 
to develop algorithm completeness theory for the control optimization that is a key element of Adaptive SBMPC and illustrate 
the power of SBMPC to avoid local minima, a feature not shared by gradient-based optimization methods.








Summary of the Most Important Results





Development of a lift performance function [1]





To develop a nonlinear adaptive control method for flow separation control first required the development of a performance 
function that is based on the available pressure measurements and can approximate lift, the variable to be manipulated in this 
research.  Hence, the first contribution of this research was to develop Z_lift as an approximation of C_L, the non-dimensional 
lift coefficient.  Fig. 3 shows how Z_lift was computed in this research while Fig. 4 shows the close correspondence between 
Z_lift and C_L in actual experiments.








Experiments that demonstrate control of lift [1,2]





The experiments were conducted using a subsonic wind tunnel. A section of a NACA 0025 airfoil was fitted with pressure 
transducers as shown in Fig. 2. As discussed above, the four pressure transducers along the center chord were used to 
approximate lift on the airfoil and to detect changes in lift due to separation. Microjets were drilled near the leading edge as a 
means of actuation, and the blowing pressure supplied to these microjets is the actuation input used to control separation. 
Before each closed loop control experiment, there was an open loop training phase, in which a sweep of input frequencies are 
commanded. From the measured outputs, a model was constructed that represents the relationship between inputs and outputs 
of the plant. After the training phase, the neural network was continually updated and could therefore adjust to both small and 
large changes in plant behavior.  


The closed-loop experimental results demonstrate the capability to not only maximize lift, but also control lift by commanding 
intermediate values. In Fig. 5, the commanded reference signal (dashed line) is constant, which means the control system was 
configured to increase and hold Z_lift constant. The actual ouput signal (solid line) achieves the commanded increase-and-hold 
behavior. In Fig. 6, the commanded reference was manually stepped downwards, in order to demonstrate the ability of the 
control system to decrease Z_lift when desired. Fig 7 displays similar results and includes both upward and downward stepwise 
motion. For the case shown in Fig 8, the neural network was trained at a Reynolds number of 125,000, but control is 
demonstrated for a Reynolds number of 150,000. Some prediction error, indicated by the departure of the dotted line from the 
solid line, occurs around 13 seconds, but the error is corrected within 5 seconds. This demonstrates the robustness achieved by 
online system identification.





Fig. 9 shows the control adjustment in reaction to changes in Reynolds number during operation. The system adjusts the neural 
network model at the same time as the updated control signal is being computed and executed. The adaptation of the neural 
network model is vital when flow conditions change. In Fig. 9, the model adaptation is what allows the neural net prediction 
signal (dotted curve) to adjust to match the measured signal (solid curve) even when the flow conditions change. SBMPC is 
then responsible for modifying the control input signal so that the prediction signal matches the reference signal (dashed curve). 
Because of the closed loop control system, it was possible to take a scenario where the flow was controlled and attached, 
change the wind tunnel speed so that the flow separates, and observe the neural network adaptation and controller reaction as 
the flow is automatically reattached. The 15-second transient beginning at the 10 second mark is a model adaptation, not a 
transient on control. While the model has moderate error, the control system continues to operate, but may be less efficient until 
this adaptation is complete.





In order to verify that the changes in Z_lift actually correspond to a changing degree of separation in the flow, visualization 
experiments were performed to capture the velocity field surrounding the wing both with and without control enabled. In these 
experiments, the airfoil wind tunnel configuration was fixed to a particular angle of attack and tunnel velocity. The velocity field 
was then measured via Partial Image Velocimetry (PIV) and averaged over a 1000-frame, 60-second window. For the purpose 
of visualization, the image processing results are displayed with a flipped y-axis so that the angle of attack is depicted as 
positive. (The PIV experiments were performed with a negative angle of attack.) The control system was then enabled to 
maximize Z_lift. The control system can be configured to maximize lift by prescribing a constant reference trajectory that is 
greater than the attainable range of Z_lift values. In this case, the reference for Z_lift was set to 0. A second series of PIV 
measurements of the same duration was collected to characterize the controlled flow. Contours of streamwise velocity V_x are 
shown in Figs. 10 and 11, and display the uncontrolled and controlled flows for two different flow conditions (angle of attack 16 
deg, Re 150,000, and angle of attack 22 deg, Re 90,000, respectively) when the controller is set to maximize Z_lift.  In the 
absence of blockage effects and for a larger PIV window, the value of V_x/V_infty would equal 1 far from the airfoil. In these 
figures, the separated region is outlined by zero-velocity contours shown in black. Based on averaged pressure data, the 
enabling of control increased average Z_lift by 1.4 and 1.7 respectively. In both cases, the separation bubble is greatly reduced 
in size and is further downstream. The flow fields indicate massive separation when uncontrolled, and while there is some 
separation with control, the size of the trailing edge separated region is less, indicating the limitations of the actuators' control 
authority.





In summary, the experimental results show that the closed loop control system using Adaptive SBMPC was not only able to 
reattach separated flow, it also controlled the degree of separation when required. The result was the ability to command lift and 
adapt to changes in the flow conditions. Control was achieved in real time, demonstrating that Adaptive SBMPC is 
computationally efficient enough to perform active control on time scales on the order of 100 ms. (The identification and control 
algorithms were programmed in C and implemented in a real time environment on dSPACE 1006 hardware.)





SBMPO Completeness [3]





For the receding horizon MPC problem, we define a goal state as any horizon-depth node whose trajectory is minimal in cost. A 
{sound} graph search algorithm returns only trajectory solutions that reach a goal state. A given sound algorithm is {complete} if 
it always returns one such solution if any solution exists. Assuming the heuristic function (i.e., the prediction of the cost to move 
from the current state to the goal state that is used by SBMPO) always underestimates the lowest cost to the prediction horizon, 
SBMPO (the optimization that underlies the control portion of Adaptive SBMPC), like A* and other graph search algorithms, 
may be shown to be complete over a given graph. A proof was formally derived in this research. It guarantees that subject to 



sufficient depth and breadth of sampling, SBMPO will find a globally optimal solution. Due to gaps between samples, some 
suboptimality will result. 





Demonstration that SBMPC can avoid local minima and converge to or near the global minimum [3]





SBMPC was applied to finding the optimal of Rastrigin’s function, which as shown in Fig. 12 has numerous local minima.  As 
shown in Fig. 13(a) SBMPC always converged to the global minimum, independent of the initial conditions.  In contrast, Fig. 13
(b) shows that Sequential Quadratic Programming (SQP) MPC only converges to the local minimum when the initial state is 
near the global minimum.





A more complex benchmark dynamic system characterized by a parameter beta was also considered.  As shown in Fig. 14(a), 
when beta = 1.0, the plant has few local minima.  However, Fig. 14(b) shows that when beta = 0.2, the plant has numerous local 
minima.  For the latter case Fig. 5 shows that due to the presence of the local minima SBMPC was able to outperform 
Generalized Predictive Control (GPC), an established method for NMPC that relies on gradient-based optimization.





Comparison between Adaptive SBMPC and Neural GPC in a power plant combustion application [3]





To consider adaptive control of a complex multiple input – multiple output system, a comparison between Adaptive SBMPC and 
the Neural GPC methods was performed with a simulated power plant combustion control example.  When controlling a 
combustion system, constraints on inputs and outputs are necessary in order to meet power demands, ensure safe operating 
levels, or regulate environmental pollutants. For these reasons, the industry's need for handling these constraints has steadily 
increased, and MPC is arguably the control methodology most suitable to handle them.  For the problem considered in this 
research, the inputs are fuel mass rate (u_1) and oxygen damper angle (u_2), and the outputs to be controlled are the flue 
volume concentrations of oxygen, carbon dioxide, and carbon monoxide. 


 


In the simulation, plant dynamics are applied as step parameter changes at the beginning of each 500 second interval of 
simulation time. The nature of the changing boiler dynamics is presented in Fig. 16. Each change is from the normal dynamic 
behavior, such that the changes mentioned are in effect during the interval but revert back to the normal values. 


 


The data for the case shown in Figs. 17 and 18 indicates that after each shift in plant dynamics, the neural networks are 
adapted and prediction errors were corrected. In Figure 17 Neural GPC exhibited significant and sustained tracking error due to 
violation of the u_2 input constraint. (Neural GPC does not guarantee enforcement of the input constraints.) Fig. 18 shows that 
SBMPC did not violate the input constraints and achieved strong tracking behavior. After each plant change, the neural 
networks quickly adapt to decrease the prediction error.








Concluding Remarks





Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC) has been developed and implemented in both 
experiments and simulations.   The method has a strong theoretical foundation and has the clear advantage over gradient-
based methods of having the ability to avoid local minimum as illustrated in simulated examples.  The application to flow 
separation control shows the great promise of this method for real time implementation in real world applications.


Closed loop control of separated flows has been demonstrated using this new approach. Quantitative results using a pressure-
based lift approximation indicate the effectiveness of the control system to control flow behavior based on a nonlinear neural 
network model constructed from data. This model is adjusted in real time to represent changes in flow conditions while the 
controller is in operation. The closed loop experiments demonstrated successful tracking of desired values of Z_lift by mitigating 
flow separation. The control system is able to increase or decrease lift in response to an external command, subject to the 
limitations of the actuator. Both the nonlinear input-to-output behavior of the system and the nonlinear control law are learned 
adaptively, so even when flow conditions were modified during a control experiment, the control system was successful in 
adjusting the inputs to meet the desired Z_lift value. A few selected cases were visualized using PIV, which verified the 
reduction in flow separation.





The nonlinear system identification and control technique developed in this research requires few tuning parameters, making it 
easily applicable to many other configurations of sensors and actuators beyond the unsteady pressure transducer and microjet 
configuration initially considered. This implementation of Adaptive SBMPC is the first to demonstrate flow separation control 
using a model that is nonlinear and updated online. 





The SBMPO algorithm used for control optimization is shown via mathematical proof to be a complete search algorithm subject 
to sufficient sampling density and length of the prediction horizon. Hence, unlike approaches that optimize by linearization, 
convergence to a nearly global minimum is achievable even when numerous local minima exist. This is first demonstrated with 
a global optimization of Rastrigin's Function, where SBMPC is shown to outperform MPC based on Sequential Quadratic 
Programming optimization.  It was also demonstrated using another benchmark problem from the literature, and SBMPC was 
shown to outperform the established NMPC technique, Neural GPC, in avoiding local minima.








Adaptive SBMPC and Neural GPC control systems were further used to perform Adaptive NMPC. The results of this research 
indicate that both neural network structures are capable of representing the nonlinear system and both control methodologies 
easily handle the SISO time-invariant control case.  The results of this research are the first control results to use Neural GPC 
to control a time-varying MIMO plant.  However, when a MIMO power plant combustion control problem was considered, Neural 
GPC tended to violate the input constraints, which led to poor reference tracking. By design, Adaptive SBMPC cannot violate 
input constraints and good tracking results were achieved.





Simulation results with the combustion control problem were presented for changing dynamics and highlight the adaptive nature 
of the control system as did some of the flow separation control results. One limitation of these and other NMPC approaches is 
the breakdown due to complexity for large numbers of inputs and outputs. However, SBMPO is naturally compatible with 
parallel computations since it uses a divide-and-conquer approach to perform optimization. Node expansion is the most costly 
portion of the Adaptive SBMPC algorithm, but these computations can be implemented in parallel. There is also a possibility for 
significant computational improvement with the addition of search heuristics and a parallel implementation of portions of the 
algorithm. Within a graph search optimization, a suitable heuristic can dramatically reduce the number of nodes that are 
expanded, and performing the edge cost calculation in parallel on multiple cores could significantly reduce the required run time 
per node. 





In summary, the results of this research have resulted in a novel and widely applicable adaptive nonlinear control methodology.  
It is expected to find many additional applications in flow control and other fields such as power system control and automotive 
engine tuning.








References





1.  B. Reese, F. Alvi, and E. G. Collins, “A Nonlinear Adaptive Method for Microjet-Based Flow Separation Control,”7th AIAA 
Flow Control Conference, Atlanta, GA, June 16 – 20, 2014.





2.  B. Reese, E. G. Collins, Jr., and F. Alvi, “A Nonlinear Adaptive Method for Microjet-Based Flow Separation Control,” AIAA 
Journal, to appear, available at http://arc.aiaa.org/doi/10.2514/1.J054307. 





3.  B. Reese and E. G. Collins, Jr., “A Graph Search and Neural Network Approach to Adaptive Nonlinear Model Predictive 
Control,” Engineering Applications of Aritificial Intelligence, Vol. 55, 2016, pp. 250-268.

Technology Transfer

Funded collaboration with Siemens Corporation on project entitled, "Adaptive Sampling Based Model Predictive Control for the 
Ammonia Feed System of the Selective Catalytic Reduction (SCR) System in a Combined Cycle Plant".





NASA SBIR with Spectral Energies, LLC on project entitled, "Flow Control on a High Lift Airfoil Using High-Bandwidth 
Microactuators".





DOE STTR with Nhu Energy, Inc., entitled "Optimal Integrated Control of Grid-Connected PV Generation and On-site-Load".



	
  

	
  

	
  

Figure	
  1.	
  Block	
  diagram	
  of	
  Adaptive	
  SBMPC.	
  	
  The	
  control	
  task	
  is	
  to	
  provide	
  inputs	
  u	
  to	
  the	
  plant	
  such	
  that	
  
outputs	
  y	
  match	
  a	
  reference	
  trajectory	
  r.	
  	
  The	
  neural	
  network	
  model	
  is	
  identified	
  online,	
  and	
  as	
  candidate	
  
input	
  trajectories	
  u*	
  are	
  provided	
  by	
  SBMPO	
  to	
  the	
  neural	
  network,	
  their	
  corresponding	
  predicted	
  ouputs	
  
𝑦∗	
  are	
  returned.	
  



	
  

	
  

	
  

Figure	
  2.	
  Airfoil	
  Schematic.	
  The	
  (top)	
  diagram	
  includes	
  microject	
  arry	
  and	
  pressure	
  transducer	
  locations.	
  	
  
The	
  pressure	
  transducers	
  at	
   four	
  distinct	
   locations	
  give	
  enough	
   information	
  about	
  the	
  surface	
  pressure	
  
distribution	
  to	
  approximate	
  lift	
  changes.	
  The	
  cross	
  section	
  schematic	
  (lower)	
  is	
  also	
  shown.	
  

	
   	
  



	
  

	
  

	
  

𝑉!	
  is	
  the	
  freestream	
  velocity.	
  

	
  

	
  

Figure	
  3.	
  𝑍!"#$	
  Performance	
  Function.	
  𝑍!"#$ 	
  was	
  used	
  in	
  this	
  research	
  to	
  approximate	
  the	
  lift	
  coefficient.	
  	
  It	
  
is	
  computed	
  using	
  the	
  four	
  pressure	
  measurements	
  of	
  Figure	
  2.	
  

	
  

	
   	
  



	
  

	
  

	
  

Figure	
   4.	
   Experimental	
   Comparison	
   of	
  𝑍!"#$	
   and	
   Coefficient	
   of	
   Lift.	
   	
   For	
   RE	
   =	
   95,000,	
   computed	
  𝑍!"#$	
  
values	
  are	
  plotted	
  with	
  experimentally	
  measured	
  𝐶!	
  (lift	
  coefficient)	
  values	
  vs.	
  the	
  angle	
  of	
  attack	
  𝛼.	
  

	
  

	
  

	
  

	
   	
  



	
  

	
  

Figure	
  5.	
  Lift	
  Control	
  -­‐	
  Closed	
  Loop	
  Case	
  1:	
  The	
  Reynolds	
  number	
   is	
  125,000,	
  and	
  the	
  angle	
  of	
  attack	
   is	
  
20°.	
   	
   This	
   closed	
   loop	
   case	
   illustrates	
   the	
   ability	
   to	
   follow	
   a	
   step	
   reference	
   signal	
   subsequent	
   to	
   the	
  
activation	
  of	
  the	
  SBMPC	
  controller.	
  

	
  

	
   	
  



	
  

	
  

Figure	
  6.	
  Lift	
  Control	
  -­‐	
  Closed	
  Loop	
  Case	
  2:	
  The	
  Reynolds	
  number	
  is	
  125,000,	
  and	
  the	
  angle	
  of	
  attack	
  is	
  
20°.	
  This	
  closed	
  loop	
  case	
  illustrates	
  the	
  ability	
  to	
  command	
  intermediate	
  values	
  of	
  𝑍!"#$.	
  

	
  

	
   	
  



	
  

	
  

	
  

Figure	
  7.	
  Lift	
  Control	
  -­‐	
  Closed	
  Loop	
  Case	
  3:	
  The	
  Reynolds	
  number	
   is	
  125,000,	
  and	
  the	
  angle	
  of	
  attack	
   is	
  
20°.	
  This	
  closed	
  loop	
  case	
  illustrates	
  the	
  saturation	
  behavior	
  of	
  the	
  controller:	
  from	
  time	
  0	
  to	
  5	
  seconds,	
  
𝑍!"#$	
  is	
  simply	
  maximized	
  when	
  the	
  specified	
  reference	
  is	
  above	
  the	
  attainable	
  actuation	
  range.	
  Tracking	
  
resumes	
  when	
  the	
  reference	
  value	
  is	
  decreased	
  to	
  an	
  attainable	
  value.	
  

	
  

	
   	
  



	
  

Figure	
  8.	
  Lift	
  Control	
  -­‐	
  Closed	
  Loop	
  Case	
  4:	
   	
  The	
  Reynolds	
  number	
  is	
  150,000,	
  and	
  the	
  angle	
  of	
  attack	
  is	
  
20°.	
   This	
   closed	
   loop	
   case	
   illustrates	
   the	
   ability	
   to	
   track	
   ramp	
   trajectories.	
  During	
   training,	
   the	
   tunnel	
  
Reynolds	
  number	
  was	
   set	
   to	
  125,000,	
   ensuring	
   that	
  online	
  model	
  adaptation	
  would	
  be	
   required	
  when	
  
tested	
  at	
  a	
  higher	
  Reynolds	
  number.	
  

	
   	
  



	
  

	
  

	
  

	
  

	
  

Figure	
  9.	
  Lift	
  Control	
  -­‐	
  Closed	
  Loop	
  Case	
  5:	
  The	
  Reynolds	
  number	
  shifts	
  from	
  150,000	
  to	
  140,000,	
  and	
  the	
  
angle	
  of	
  attack	
  is	
  20°.	
  This	
  case	
  demonstrates	
  that	
  the	
  ability	
  to	
  adapt	
  enables	
  the	
  control	
  system	
  to	
  be	
  
robust	
  to	
  changes	
  in	
  the	
  flow	
  conditions.	
  

	
  

	
   	
  



	
  

	
  

	
  

	
  

(a)	
  

	
  	
  

(b)	
  

Figure	
  10.	
  PIV	
  Visualization	
  Uncontrolled	
  and	
  Controlled	
  Cases:	
  angle	
  of	
  attack	
  16°,	
  velocity	
  15	
  m/s.	
  The	
  
PIV	
  data	
  in	
  (a)	
  was	
  collected	
  with	
  the	
  control	
  system	
  off,	
  the	
  data	
  in	
  (b)	
  was	
  collected	
  with	
  the	
  control	
  
system	
  set	
  to	
  maximize	
  𝑍!"#$,	
  and	
  the	
  tunnel	
  speed	
  corresponds	
  to	
  a	
  Reynolds	
  number	
  of	
  150,000	
  based	
  
on	
  chord	
  length.	
  The	
  white	
  dashed	
  line	
  indicates	
  zero	
  horizontal	
  velocity	
  𝑉!.	
  

	
   	
  



	
  

	
  

	
  

(a)	
  

	
  

(b)	
  

Figure	
  11.	
  	
  PIV	
  Visualization	
  Uncontrolled	
  and	
  Controlled	
  Cases:	
  angle	
  of	
  attack	
  22°,	
  velocity	
  11	
  m/s.	
  The	
  
PIV	
  data	
  in	
  (a)	
  was	
  collected	
  with	
  the	
  control	
  system	
  off,	
  the	
  data	
  in	
  (b)	
  was	
  collected	
  with	
  the	
  control	
  
system	
  set	
  to	
  maximize	
  𝑍!"#$,	
  and	
  the	
  tunnel	
  speed	
  corresponds	
  to	
  a	
  Reynolds	
  number	
  of	
  150,000	
  based	
  
on	
  chord	
  length.	
  The	
  white	
  dashed	
  line	
  indicates	
  zero	
  horizontal	
  velocity	
  𝑉!.	
  

	
  



	
  

	
  

Figure	
   12.	
   Rastrigin’s	
   Function	
   in	
   One	
   Dimension.	
   This	
   objective	
   function	
   with	
   several	
   local	
   minimum	
  
points	
  serves	
  as	
  a	
  transparent	
  example	
  for	
  evaluatiing	
  nonlinear	
  optimization.	
  

	
   	
  



	
  

(a)	
  

	
  

(b)	
  

Figure	
   13.	
   MPC	
   Convergence	
   Behavior	
   Summary.	
   	
   Each	
   data	
   point	
   represents	
   a	
   unique	
   initial	
   state.	
  	
  
Initial	
   configurations	
   for	
   which	
   the	
   simulation	
   converges	
   to	
   within	
   a	
   small	
   region	
   about	
   the	
   global	
  
minimum	
  are	
  marked	
  with	
  a	
  blue	
  asterisk,	
  while	
  initial	
  configurations	
  for	
  which	
  the	
  simulation	
  converges	
  
to	
  a	
  local	
  minimum	
  are	
  marked	
  with	
  a	
  green	
  dot.	
  	
  With	
  SBMPC,	
  the	
  global	
  minimum	
  is	
  found	
  from	
  every	
  
initial	
  state.	
  	
  SQP	
  MPC	
  only	
  finds	
  the	
  global	
  minimum	
  when	
  the	
  initial	
  state	
  is	
  near	
  the	
  global	
  minimum.	
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(b)	
  

Figure	
  14.	
  Benchmark	
  Plant	
  Visualization.	
  	
  Plot	
  (a)	
  is	
  for	
  𝛽 = 1.0,	
  and	
  plot	
  (b)	
  for	
  𝛽 = 0.2.	
  By	
  modifying	
  
𝛽,	
  the	
  number	
  of	
  occurrences	
  of	
  local	
  minima	
  in	
  the	
  state	
  space	
  may	
  be	
  greatly	
  increased.	
  	
  In	
  both	
  plots,	
  
the	
  prediction	
  horizon	
  𝑁 = 1.	
  

	
  



	
  

(a)	
  

	
  

(b)	
  

Figure	
   15.	
   Benchmark	
   Results:	
  𝛽 = 0.2,  step	
   tracking.	
   After	
   a	
   90-­‐second	
   training	
   phase,	
   the	
   reference	
  
was	
   tracked	
   using	
   GPC	
   (a)	
   and	
   SBMPC	
   (b).	
   Both	
   converge	
   more	
   slowly	
   than	
   in	
   the	
   previous	
   case.	
  
However	
   Neural	
   GPC	
   convergence	
   takes	
   100	
   simulation	
   steps	
   while	
   the	
   Adaptive	
   SBMPC	
   method	
  
converges	
  within	
  20	
  steps.	
  The	
  GPC	
  suboptimal	
  convergence	
  state	
  is	
  due	
  to	
  finding	
  a	
  local	
  minimum.	
  The	
  
error	
  plot	
  (c)	
  indicates	
  a	
  difference	
  of	
  2.5	
  orders	
  of	
  magnitude	
  between	
  globally	
  optimal	
  convergence	
  of	
  
SBMPC	
  and	
  the	
  locally	
  optimal	
  convergence	
  of	
  GPC.	
  

	
   	
  



	
  

	
  

	
  

Figure	
   16.	
   Time	
   Variation	
   of	
   Simulation	
   Plant	
   Dynamics	
   for	
   the	
   Power	
   System	
   Combustion	
   Control	
  
Problem.	
  	
  Every	
  500	
  sec	
  the	
  plant	
  dynamics	
  were	
  substantially	
  changed.	
  

	
  

	
  

	
  



	
  

Figure	
  17.	
  Neural	
  GPC	
  Power	
  Plant	
  Combustion	
  Control	
  Results.	
  With	
  plant	
  changes	
  occurring	
  every	
  500	
  
seconds,	
  the	
  model	
  adapts	
  and	
  control	
  inputs	
  are	
  updated	
  simultaneously.	
  The	
  shaded	
  upper	
  and	
  lower	
  
regions	
  on	
  the	
  input	
  plots	
  are	
  infeasible	
  regions	
  beyond	
  the	
  input	
  constraints.	
  The	
  value	
  u2,SAT	
  is	
  input	
  to	
  
the	
   plant	
   when	
   the	
   fuel	
   rate	
   constraint	
   violation	
   occurs.	
   Because	
   of	
   this	
   saturation	
   of	
   u2,	
   tracking	
   is	
  
unsuccessful	
  as	
  u1	
  alone	
  lacks	
  the	
  control	
  authority	
  to	
  track	
  the	
  reference.	
  

	
  

	
   	
  



	
  

	
  

	
  

Figure	
   18.	
   SBMPC	
   Power	
   Plant	
   Combustion	
   Control	
   Results.	
   SBMPC	
   successfully	
   adapts	
   to	
   the	
   plant	
  
changes	
   at	
   500	
   second	
   intervals,	
   and	
   once	
   converged,	
   low	
   tracking	
   error	
   and	
   output	
   constraint	
  
satisfaction	
  is	
  achieved.	
  

	
  




